Dietary proanthocyanidins modulate BMAL1 acetylation, Nampt expression and NAD levels in rat liver

نویسندگان

  • Aleix Ribas-Latre
  • Laura Baselga-Escudero
  • Ester Casanova
  • Anna Arola-Arnal
  • M-Josepa Salvadó
  • Cinta Bladé
  • Lluís Arola
چکیده

Metabolism follows circadian rhythms, which are driven by peripheral clocks. Clock genes in the liver are entrained by daytime meals and food components. Proanthocyanidins (PAs), the most abundant flavonoids in the human diet, modulate lipid and glucose metabolism. The aim of this study was to determine whether PAs could adjust the clock system in the liver. Male Wistar rats were orally gavaged with 250 mg grape seed proanthocyanidin extract (GSPE)/kg body weight at zeitgeber time (ZT) 0 (light turned on), at ZT12 (light turned off), or before a 6 hour jet-lag and sacrificed at different times. The 24 hour rhythm of clock-core and clock-controlled gene expression indicated that nicotinamide phosphoribosyltransferase (Nampt) was the most sensitive gene to GSPE. However, Nampt was repressed or overexpressed after GSPE administration at ZT0 or ZT12, respectively. NAD levels, which are controlled by Nampt and also exhibit circadian rhythm, decreased or increased according to Nampt expression. Moreover, the ratio of acetylated Bmal1, that directly drives Nampt expression, only increased when GSPE was administered at ZT12. Therefore, GSPE modulated the clock system in the liver, suggesting that PAs can regulate lipid and glucose metabolism by adjusting the circadian rhythm in the liver.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dietary proanthocyanidins boost hepatic NAD+ metabolism and SIRT1 expression and activity in a dose-dependent manner in healthy rats

Proanthocyanidins (PACs) have been reported to modulate multiple targets by simultaneously controlling many pivotal metabolic pathways in the liver. However, the precise mechanism of PAC action on the regulation of the genes that control hepatic metabolism remains to be clarified. Accordingly, we used a metabolomic approach combining both nuclear magnetic resonance and mass spectrometry analysi...

متن کامل

Global Loss of Bmal1 Expression Alters Adipose Tissue Hormones, Gene Expression and Glucose Metabolism

The close relationship between circadian rhythm disruption and poor metabolic status is becoming increasingly evident, but role of adipokines is poorly understood. Here we investigated adipocyte function and the metabolic status of mice with a global loss of the core clock gene Bmal1 fed either a normal or a high fat diet (22% by weight). Bmal1 null mice aged 2 months were killed across 24 hour...

متن کامل

Autocrine effects of visfatin on hepatocyte sensitivity to insulin action.

Visfatin was originally described as an adipokine with insulin mimetic effects. Recently, it was found that visfatin is identical with the Nampt (nicotinamide phosphoribosyltransferase) gene that codes for an intra- and extracellular NAD biosynthetic enzyme and is predominantly expressed outside the adipose tissue. In the current study, we found strong protein and mRNA expression of visfatin in...

متن کامل

Inhibition of Nicotinamide Phosphoribosyltransferase Induces Apoptosis in Estrogen Receptor-Positive MCF-7 Breast Cancer Cells

PURPOSE Tumor cells have increased turnover of nicotinamide adenine dinucleotide (NAD+), the main coenzyme in processes including adenosine diphosphate-ribosylation, deacetylation, and calcium mobilization. NAD+ is predominantly synthesized in human cells via the salvage pathway, with the first component being nicotinamide. Nicotinamide phosphoribosyltransferase (NAMPT) is the key enzyme in thi...

متن کامل

Downregulation of the Longevity-Associated Protein Sirtuin 1 in Insulin Resistance and Metabolic Syndrome: Potential Biochemical Mechanisms

OBJECTIVE Sirtuins (SIRTs) are NAD(+)-dependent deacetylases that regulate metabolism and life span. We used peripheral blood mononuclear cells (PBMCs) to determine ex vivo whether insulin resistance/metabolic syndrome influences SIRTs. We also assessed the potential mechanisms linking metabolic alterations to SIRTs in human monocytes (THP-1) in vitro. RESEARCH DESIGN AND METHODS SIRT1-SIRT7 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015